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ABSTRACT 

Recently, meshes of engineering objects have been easily 

acquired by 3D laser or high-energy industrial X-ray CT 

scanning systems and they are widely used in product 

developments. For the effective use of scanned meshes in 

inspection, re-design, and simulation of the objects, it is 

important to reconstruct CAD models from the meshes. 

Engineering objects often exhibit Euclidean symmetries for 

their functionalities. Therefore, it is essential to detect such 

symmetries when reconstructing CAD models with compact 

data representations which are similar to the ones already 

defined in CAD systems. However, existing methods for 

reconstructing CAD models have not focused on detecting such 

symmetries. In this paper, we propose a new method that 

detects partial or global Euclidean symmetries, including 

translation, rotation, and reflection, from scanned meshes of 

engineering objects based on the combination of the ICP and 

the region growing algorithms. Our method can robustly and 

efficiently extract pairs of symmetric regions and their 

transformations under which the pair can be closely matched to 

each other. We demonstrate the effectiveness of the proposed 

method from experiments on various scanned meshes.  

1. INTRODUCTION 

3D laser scanning systems are widely used in product 

developments for acquiring geometric point cloud data from 

real-world engineering objects. More recently, high-energy 

industrial X-ray CT scanning systems, which have been rapidly 

developed, have enabled users to quickly and non-destructively 

obtain 3D image data of complex objects containing internal 

structures [1]. The acquired data is easily converted into a 3D 

mesh by well-known surface reconstruction algorithms, such as 

marching cube [2]. For inspection, re-design, and simulation of 
1

engineering objects, reconstructing CAD models from the 

scanned meshes is very important.  

Engineering objects often exhibit Euclidean symmetries for 

their functionalities. We define “Euclidean symmetries” as an 

arbitrary set of translations, rotations, and reflections. For 

example, two hexagonal portions exist in the object in Fig.1(a). 

They are estimated to be defined in the CAD system by first 

creating a solid corresponding to the hexagonal portion and 

then by translating it along the vectors and rotating it around 

the axis. On the other hand, when the right and left sides of the 

object seem symmetric, as with the object in Fig.1(b), they are 

estimated to be defined by first creating a solid corresponding 

to one side and then reflecting it about the plane. Therefore, it is 

essential to detect such Euclidean symmetries to reconstruct 

CAD models with compact data representations which are 

similar to the ones already defined in CAD systems. However, 

existing methods for CAD model reconstruction have not 

focused on detecting such symmetries [3,4,5,6]. 

Fig.2 shows an example of our approach for reconstructing 

a CAD model from a scanned mesh based on Euclidean 

symmetry detection. In this example, a reflective symmetry is 

considered. First, the reflective symmetry is detected, and the 

3D partial mesh and the reflective plane are obtained. Then, the 

 
Fig.1: Examples of symmetries in engineering objects  

(a) Translation and rotation (b) Reflection
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Fig.2: An example of our CAD models reconstruction approach (a case of reflective symmetry) 
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3D partial CAD model is reconstructed from the 3D partial 

mesh by estimating a sweeping direction and distance and by 

creating 2D profiles. Finally, the 3D CAD model is 

reconstructed by reflecting the partial CAD model about the 

extracted reflective plane and performing some Boolean 

operations.   

From the example in Fig.1, for reconstructing a CAD 

model from the scanned meshes, it is necessary to detect partial 

or global Euclidean symmetries, including translations, 

rotations, and reflections.   

1.1. Related works 

Symmetry detection has been widely studied in computer 

vision and computer graphics fields, and many algorithms have 

been proposed.  

Zabrodsky et al. [7] proposed an algorithm to detect 

approximate symmetries from 2D images by expressing 

symmetry as a continuous feature. Loy et al. [8] proposed the 

algorithm that detects rotational and reflective symmetries from 

2D images based on Hough transform. However, these only aim 

at detecting symmetries from 2D images.  

Sun and Sherrah [9] proposed the algorithm that uses the 

Gaussian image for detecting global symmetries from a 3D 

model. Martinet et al. [10] also proposed an algorithm to detect 

global symmetries from 3D meshes by examining the extrema 

and spherical harmonic coefficients of the object’s generalized 

moments. However, these methods cannot detect partial 

symmetries. 

Simari et al. [11] proposed the algorithm that detects planar 

reflective symmetries based on robust M-estimation and then 

hierarchically segments the mesh using detected symmetries. 

Podolak et al. [12] proposed to detect all of the possible planar 

reflective symmetries from a 3D mesh based on the voting 

scheme. However, these methods can detect only planar 

reflective symmetries and cannot do translational and rotational 

symmetries. 

To our knowledge, only Mitra et al. [13] proposed the 

algorithm that detects partial or global symmetries, including 
2

translation, rotation, and reflection, from 3D meshes. This 

algorithm first computes principal curvatures and directions at 

each vertex. Then, for each pair of vertices, it computes a 

transformation under which the pair can be matched using 

estimated principal curvatures and directions, and then the 

algorithm maps each transformation into a particular point in 

the transformation space. Next, it finds the large clusters of 

mapped points in the transformation space through the mean-

shift clustering algorithm. Finally, it detects symmetries as sets 

of vertex pairs that constitute the large clusters in the space and 

thus can be matched under the approximately same 

transformation. However, since this algorithm computes 

principal curvatures and directions at each vertex, it may fail to 

robustly detect symmetries from noisy scanned meshes. 

Moreover, it cannot detect symmetries from meshes that 

include many planar regions where principal curvatures and 

directions cannot be uniquely defined, which is a critical 

drawback for our purpose. Engineering objects often include 

many planar regions, and Mitra’s algorithm cannot be used for 

scanned meshes of such objects.  

1.2. Our purpose and an overview of our algorithm 

In this paper, we propose a new method that detects partial 

or global Euclidean symmetries from scanned meshes of 

engineering objects that include many planar regions. Our 

method is based on the combination of iterative closest points 

(ICP) [14,15] and region growing algorithms [16]. We define 

“Euclidean symmetry detection” as extracting a pair of partial 

or global symmetric regions on meshes and the transformation 

under which the pair can be closely matched to each other. In 

our case, a transformation includes an arbitrary set of 

translations, rotations, and reflections.  

Since the ICP algorithm can accurately extract a 

transformation that matches a pair of regions on the mesh, it is 

reasonable to use the ICP algorithm for symmetry detections. 

However, it may fail to extract an accurate transformation if a 

pair of regions is sampled from planes [17]. Therefore, to solve 

this problem, we propose a method that starts symmetry 
 Copyright © 2008 by ASME 



 

 
Fig.3: An overview of our algorithm 
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detection from the feature regions lying in the vicinity of planar 

ones as pairs of regions to be matched. Our method consists of 

following three steps as shown in Fig.3.   

Step1: Detection of feature regions (Section 2) 

Our method first estimates mesh principal curvatures at 

each vertex based on local quadratic polynomial surface fittings 

and detects sharp vertices [18,19]. Then, using detected sharp 

vertices, it extracts feature regions that lie in the vicinity of the 

planar regions and do not lie in the interior of them.  

Step2: Creation of seed feature regions pairs (Section 3) 

Next, our algorithm performs principal component analysis 

for each detected feature region. Then, for each pair of feature 

regions, it apply the three step processes, (1) comparing the 

number of vertices, (2) PCA matching, and (3) ICP matching. 

As a result of this process, seed feature regions pairs can be 

created as pairs of feature regions that have approximately the 

same number of vertices and can be closely matched under 

certain transformations.  

Step3: Detection of Euclidean symmetries (Section 4) 

Finally, our algorithm detects Euclidean symmetries based 

on the combination of ICP [14,15] and region growing [16] 

algorithms. It grows each pair of seed feature regions by 

iteratively adding a pair of neighboring vertices that can be 

matched under the current transformation to the seed feature 

regions and by computing a transformation using the ICP 

algorithm that matches the current pair of enlarged regions. As 

a result of this process, final pairs of Euclidean symmetric 

regions and their transformations are extracted. 

Advantages of our algorithm: 

The advantages of our proposed algorithm are summarized 

as follows: 

1. Detection of Euclidean symmetries from meshes including 

many planar regions: Since our algorithm starts symmetry 

detection from a pair of feature regions that lie in the vicinity of 

the boundaries of planar regions and do not lie in the interior of 

them, it enables the user to detect symmetries even from a mesh 

that includes many planar regions.  

 

3

2. Robustness for noisy meshes: Since our algorithm evaluates 

a set of vertices and essentially uses only vertex coordinates 

and does not require any additional information such as 

normals or curvatures in the symmetry detection steps (steps 2 

and 3), it can robustly detect Euclidean symmetries from noisy 

scanned meshes.  

3. Efficiency for large meshes: It is known that most of the 

computational time in the ICP algorithm is used to search for 

closest vertices [17]. Since our algorithm can find the new 

closest vertices during the iteration of the ICP algorithm by 

recursively searching the new pair from the current one using 

mesh connectivity, the efficiency in searching for closest points 

is increased, which makes our algorithm for Euclidean 

symmetry detection faster. 

4. Class of detected symmetries: Our algorithm enables the 

detection of the large class of partial or global symmetries, 

including translations, rotations, and reflections. 

In this paper, we deal with noisy scanned meshes that are 

reconstructed by marching cube based algorithms from the X-

ray CT scanned data. In general, the edge lengths of such 

meshes become identical compared with those of laser scanned 

meshes. Our algorithm also works for open mesh that 

represents 3D surface data.   

2. DETECTION OF FEATURE REGIONS 

2.1. Curvature estimation and sharp vertices 
extraction 

To estimate mesh principal curvatures robustly on scanned 

meshes, our algorithm first fits a quadratic polynomial surface 

),( vuh
 

in Eq. (1) for a set of vertices N(i) around each vertex 

ix . 

 5432

2

1

2

0),( avauauvavauavuh   (1) 

N(i) is defined as a set of vertices which are topologically 

connected to the center vertex ix , including ix , within the 

specified Euclidean distance satisfying Eq. (2)  

 ,|||| ,avgiij lW xx  (2) 
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Fig.4: Detection of feature regions 
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where li,avg is the average length of edges connected to 
ix
 

and 

W is the parameter that specifies the neighboring size. From our 

previous experiments, we set W=3.0 for all meshes in this 

paper. Then, the algorithm calculates principal curvatures 

max,i  
and min,i  

at the corresponding point on ),( vuh
 

of 

ix . Detailed algorithms of these processes are precisely 

described in [18,19].  

Next, the algorithm classifies the vertex as a sharp vertex if 

the maximum curvature max,i  
of 

ix
 
satisfies Eq. (3) [18,19]. 

 
avgisharp

i

lth ,

max,

1



 (3) 

The threshold sharpth  must be set depending on the geometry 

and the resolutions of the mesh. Intuitively, the larger 
sharpth  

classifies the smaller number of vertices as sharp vertices, and 

vice versa. In our previous work [19], we found that this 

curvature estimation still worked well even for both noisy X-

ray CT and laser scanned meshes.  

Fig.4 shows an example of this process. The object in 

Fig.4(a) was scanned by the X-ray CT scanning system and the 

mesh in Fig.4(b) is reconstructed. Fig.4(c) shows estimated 

maximum principal curvatures and Fig.4(d) shows extracted 

sharp vertices. 

2.2. Detection of feature regions 

Next, our algorithm extracts a set of topologically 

connected non sharp vertices as initial regions jIR
 
as shown 

in Fig.4(e). Then, it fits a least-squares plane to each jIR
 

and 

evaluates the averaged fitting error je . If je is less than 

threshold avgplal , our algorithm extracts jIR
 

as planar 

regions kPR
, 

as shown in Fig.4(f). Here avgl
 
is the averaged 
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edge length of the mesh and we usually set 5.0pla . Next, 

the algorithm extracts a set of topologically connected 

boundary vertices 
lBR
 

that lie on the boundaries in each 

kPR
 

as shown in Fig.4(g). A 
kPR

 
may contain multiple 

lBR . Finally, the algorithm extracts a set of vertices }{ ,smv  that 

lie in the specified Euclidean distance avgWl
 

from each 
lBR
 

as feature regions 
mFR , as shown in Fig.4(h). The distance is 

calculated using Eq. (2), and we usually set 0.10W . 

3. CREATION OF SEED FEATURE REGIONS PAIRS 

In this step, our algorithm creates pairs of seed feature 

regions that can be pairs of symmetric regions when grown by 

performing principal component analysis for each 
iFR
 
and 

then evaluating the matching error of a pair of feature regions 

 ji FRFR , .  

3.1. Principal component analysis 

Our method first calculates the barycenter 
ib
 
of each 

iFR
 

and then performs principal component analysis (PCA) to 

compute principal axes  3,2,1, ,, iiii aaaA
 

corresponding to 

eigenvalues 3,2,1, iii   . 

3.2. Initial matching and error evaluation 

After performing the PCA, for each pair of feature regions

 ji FRFR , , our method creates seed feature regions pairs 

based on following 3-step processes. We assume that if the 

regions represent the same geometry, the numbers of vertices in 

them are also the same. 
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Step1. Compare the number of vertices: 

If   0.1||||0.1 ji FRFR , proceed to the next 

step. Otherwise, stop the process. We set 1.0  for all 

meshes in this paper.  

Step2. Perform PCA matching and evaluate error: 

Compute a translational vector ijij bbt 
 

that matches 

ib
 
to jb

 
and then translate each vertex iki FRv ,  

such that 

kiijki ,, vtv  . Then compute a rotational matrix ijR
 

that 

matches 
iA
 

to jA
 

and then rotate each vertex around jb
 

such that kiijki ,, vRv  . Next randomly select (%)
 

of 

vertices }{ ,kiv  , and then, for each selected kiv ,
 , find the 

closest vertex )(, kcjv
 

from jFR
, 

so that the distance between 

them becomes the smallest, and then calculate the distance kije ,  
between them. Here )(kc

 
is the index of the closest vertex 

)(, kcjv
 

in jFR
 

corresponding to kiv ,
 . We usually set 

0.5 . Finally, calculate matching error pca

ije  as the 

averaged distance. If pca

ije
 
is less than threshold avg

pcal , 

proceed to the next step, otherwise, stop the process. We 

usually set 0.3pca . 

Step3. Perform ICP matching and evaluate error:  

Apply the ICP algorithm to match  ji FRFR , each other 

and calculate matching error icp

ije  using the same manner 

mentioned in step2. (The detail of the ICP algorithm is 

mentioned in section 4.1.) If icp

ije
 
is less than the threshold

avg

icpl , create the seed create feature regions pair as

 seed

j

seed

i FRFR , , otherwise, stop the process. We usually set 

0.1icp .  

In cases of detecting reflective symmetries, we deal with 

pairs  j

ref

i FRFR , , where ref

iFR
 

is a mirror image of 
iFR . 

Since they can be processed in the same method as 

 ji FRFR , , we only discuss  ji FRFR ,
 

in the next section. 

4. DETECTION OF EUCLIDEAN SYMMETRIES  

The final step of our method detects Euclidean symmetries 

using the combinatorial algorithm of the ICP [14,15] and the 

region growing algorithms [16].  

4.1. Iterative closest point algorithm 

The iterative closest point (ICP) algorithm was first 

proposed by Besl and McKay [14] and Chen and Medioni [15] 

for matching a pair of scanned data  YX , , and many variants 

have been proposed [17]. In the ICP algorithm, the optimal 

transformation can be found where the matching error between 

corresponding points is minimized. If we denote such a 

transformation iXYXYi xRtx 
 

as  XYXYXY RtT , , where 

Xi x , it can be calculated by the following procedures: 

1. Initialize: Compute the initial transformation init

XYT , and 

set 0itr . 

2. Find closest points: For each point 
itr

ix
 

in the current 

position of the data X, find the point 
0

)(icy
 
in Y that is 

closest to 
itr

ix . 

3. Compute a transformation: Compute the transformation 
itr

XYT  so that the sum of matching errors between 
 5
corresponding points is minimized. The objective function 

to be minimized is: 

 .
1

2
10

)( 



N

i

itr

iic

itrF xy  (4) 

4. Update points and calculate an error: Update points 

using the current transformation itr

XYT
 
such that 

01

iXYXY

itritritr

i xRtx  , then calculate the current average 

matching error as NFE itritr 21)( . 

5. Termination condition: If  1itritr EE ,  update  

1 itritr  and repeat the process from Step 2. 

Otherwise, output the current transformation itr

XYT
 
as the 

optimal one opt

XYT , and then stop the process. 

4.2. Region growing algorithm for segmentation 

The region growing algorithm for segmentation was first 

proposed by Besl and Jain [16], and many variants have been 

proposed [18-23]. This algorithm extracts a set of regions, each 

of which can be approximated by a surface. This algorithm first 

creates a set of seed regions }{ seed

iR , and then, for each seed 

region seed

iR , iterates the following processes:  

1. Initialize: Initialize seed

ii RR 0

 
and fit the initial surface 

0

if  
to 0

iR . Set 0itr . 

2. Fit a surface: Fit a surface itr

if  
to itr

iR . 

3. Add vertices: Calculate the distance between the surface 
itr

if  
and the vertex jx

 
that is topologically connected to 

seed

iR
 

and does not belong to any region. Add jx
 
to 

seed

iR  if the distance is below the threshold. Continue this 

process until no more vertices satisfy the condition, and 

finally extract the grown region 1itr

iR .  

4. Terminate condition: If 
itritr RR 1

, update 

1 itritr  and repeat the process from Step 2. 

Otherwise, stop the process and extract the final region 
itr

iR
 
and the surface itr

if . Here 
itrR

 
is the number of 

the vertices in 
itrR . 

4.3. Our region growing for Euclidean symmetry 
detection 

We propose a new combinatorial algorithm of the ICP and 

region growing algorithms for detecting Euclidean symmetries. 

Compared with the region growing algorithm for segmentation, 

our region growing algorithm iterates computing a 

transformation by the ICP algorithm and performing matching, 

and adding pairs of vertices. 

Our combinatorial algorithm uses extracted pairs of seed 

feature regions  seed

i

seed

ii FRFRSFRP 21 ,
 

as initial Euclidean 

symmetric pairs  }{},{ 0

,2

0

2

0

,1

0

1 liikii vSRvSR . Then, for each 

pair  0

2

0

1, ii SRSR , it iteratively grows 0

1iSR
 

and 0

2iSR  and 

extracts the final Euclidean symmetric pairs and their 

transformation according to the following processes: 

1. Initialize: For each pair  0

2

0

1, ii SRSR , compute an initial 

transformation  init

i

init

i Rt , using PCA matching as 

mentioned in section 3.2 and then perform initial matching 
 Copyright © 2008 by ASME 



 

Fig.5: An example of our region growing 

1
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1
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0
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a b c
by transforming
0

,1 kiv
 

to
0

,1 kiv  . Set 0itr . 

2. Compute a transformation by the ICP algorithm and 

perform matching: Compute a transformation  itr

i

itr

i Rt ,

that matches itr

iRS 1
 to 0

2iSR
 

based on the ICP algorithm, 

and then perform matching by transforming
0

1

0

,1 iki SRv
 

such that
0

,1

1

,1 ki

itr

i

itr

i

itr

ki vRtv  
. 

3. Add pairs of vertices: An example of this step is shown 

in Fig.5. Here
1

,1

 itr

kiv and
0

)(,2 kciv are in the seed feature 

regions, and
1

,1

 itr

kiv are matched to
0

)(,2 kciv under the 

transformation  itr

i

itr

i Rt , (Fig.5-a). Then create new all 

possible pairs   0

)(,2

1

,1 , sci

itr

si vv each of which is selected 

from their 1-ring vertices }{ 1

)(,1

 itr

kNiv and }{ 0

))((,2 kcNiv , 

including
1

,1

 itr

kiv and
0

)(,2 kciv respectively (Fig.5-b). (In the 

case of Fig.5, 48 pairs are created.) Compute the distance

sie ,  
between the pair of vertices. If sie ,  

is below the 

threshold avgaddl , add
1

,1

 itr

siv
 

to 0

1iRS  and
0

)(,2 sciv to 0

2iSR

respectively (Fig.5-c). Continue this process until no more 

pairs satisfy the condition. Finally, extract the grown 

regions 1

1

 itr

iRS and 1

2

itr

iSR . We usually set 0.1add .  

4. Terminate condition: If
itr

i

itr

i RSRS 1

1

1
 

, update 

1itritr and repeat the process from step 2. Otherwise, 

extract  itr

i

itr

i SRSR 21 , as the final pair of Euclidean 

symmetric regions and their transformation  itr

i

itr

i Rt , , and 

then stop the process.  

4.4. Efficient search of closest points  

Our algorithm repeats the ICP algorithm in the iterations of 

region growing. The ICP algorithm itself is a repetitive process. 

Therefore, it seems computationally expensive to repeat the ICP 

algorithm. In this ICP algorithm, most of the computational 

time is consumed finding closest points [17].  

However, in our method, it can be efficiently performed. 

Since each vertex ix
 

keeps its closest vertex )(icy
 

during the 

iteration of the region growing, the new closest vertex 
new

ic )(y
 

can be searched from )(icy
 

using the steepest-descent 

algorithm. This algorithm recursively searches the vertex 
curr

ky
 

among the 1-ring vertices }{ )( jNky
 

of jy
 

where the distance 

between ix
 

and 
curr

ky
 
becomes the smallest. Moreover, our 
 6
algorithm can use mesh connectivity for this search, so it does 

not need to construct the additional data structures, such as k-d 

tree, which are commonly used to accelerate the search. 

Our algorithm needs full searches to find the closest 

vertices only at the first iteration of the ICP algorithm and at the 

first iteration of the region growing algorithm. In this iteration, 

our method performs the full searches in order to assure that it 

accurately finds the globally closest vertices. However, pairs of 

seed feature regions include only about 10,000 vertices at 

maximum, as in the case of the large scanned mesh in Fig.7. 

Therefore, even the full searches for these pairs do not require a 

long computational time.  

5. RESULTS 

We applied our proposed algorithm to the X-ray CT 

scanned meshes on real-world engineering objects. All the 

experiments were processed on a 2.4 GHz Core 2 Duo CPU. 

Fig.6 shows some examples of results for the scanned 

mesh of the connecting rod, which is also shown in Fig.1 and 

Fig.4. The mesh contains 123,427 vertices and the averaged 

edge length is 0.98mm. Our method detected 15 feature regions 

from the mesh. It also detected 32 pairs of symmetric regions 

and two global reflective symmetries were included in them. 

Fig.6(a) and Fig.6(d) show that pairs of seed feature regions are 

appropriately grown and that the pairs of reflective symmetric 

regions are detected. Fig.6(b) and Fig.6(e) show the 

transformation result according to the extracted transformation. 

We evaluated the averaged distances 
itrE  between closest 

vertices at the end of the region growing, and they were 

0.48mm and 0.47mm respectively. Fig.6(c) and Fig.6(f) show 

the detected reflective planes, which are calculated by fitting 

the least-squares planes for sets of mid-points between the 

vertices and their closest points. We evaluated the angle 

between the normal vectors of the two planes, and the angle 

was about 89.7 degree. This shows that our method can 

accurately and robustly extract a transformation under which a 

region is closely matched to the other. The running time was 

about 98 seconds.  
 Copyright © 2008 by ASME 



 
Fig.6: Result for the X-ray CT scanned mesh of the connecting rod 
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Fig.7 shows some examples of the results for the scanned 

mesh in Fig.7(a) of the crankshaft. The mesh contains 487,357 

vertices and the averaged edge length is 1.02mm. Our method 

detected 100 feature regions and 114 pairs of symmetric regions 

from the mesh. It shows that the pairs of seed feature regions 

shown in Fig.7(a) and Fig.7(d) are created. Fig.7(b), Fig.7(c), 

and Fig.7(e) show detected reflective planes and reflective 

symmetric regions about the planes. The averaged distance 
itrE  was 0.56mm and 0.51mm respectively. Our method could 

extract symmetries in about 19 minutes from this mesh. This 

shows that our method can efficiently detect symmetries from 

large meshes.  

Limitations: The limitation of our method is that it fails to 

detect symmetries when the appropriate pairs of feature regions 

cannot be detected in step2. An example of this limitation is 

shown in Fig.8. The mesh seems to include two global 

reflective symmetries. Here we denote them by 1S  and 2S . 

From this mesh, our method could detect only one of them 1S

as in Fig.8(a). Since our method cannot detect appropriate 

feature regions and could not create the pair of seed feature 

regions for 2S , it failed to detect 2S  illustrated in Fig.8(b). 

This limitation should be solved in our future work.  

6. CONCLUSION AND FUTURE WORKS 

In this paper, we proposed an algorithm that detects 

Euclidean symmetries from scanned meshes of engineering 

objects. Our method is based on the combination of the ICP and 

the region growing algorithms. Various experimental results 
 7
show that our method can robustly and efficiently detect 

Euclidean symmetries, including translation, rotation, and 

reflection, from large and noisy scanned meshes. Extracted 

symmetries then enable to estimate CAD modeling commands 

and user-defined parameters. And finally, CAD models can be 

reconstructed that contain compact data representations using 

detected symmetries. 

In future work, we will develop a method to extract pairs 

of partial regions that do not overlap each other in space from 

detected pairs of symmetric regions. Then, we will develop a 

method to estimate CAD commands and their parameters that 

are originally defined in CAD systems from the detected pairs 

of regions and transformations. 
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